A NOTE ON OPTIMUM ALLOCATION IN STRATIFIED RANDOM SAMPLING
A K P C Swain
Former Professor of Statistics, Utkal University, Bhubaneswar -751004,India

ABSTRACT
In this paper a goal programming technique of finding a compromise optimum allocation in stratified random sampling is suggested, which near about minimizes both the variance of the estimate and variance of the estimated variance.

KEY WORDS: Stratified random sampling, optimum allocation, goal programming.

MSC:62D05

RESUMEN
En este trabajo se sugiere el uso de la técnica de programación por metas para hallar una fijación óptima de compromiso en el muestreo estratificado aleatorio, el cual minimiza aproximadamente la varianza del estimado y la varianza estimada.

1. INTRODUCTION
In stratified random sampling the most important problem faced by the sample survey practitioner is to allocate the total sample size into different strata. Suppose there is a finite population of size \(N \) units divided into \(L \) strata of sizes \(N_h \), \(h = 1,2,.....,L \), \(\sum_{h=1}^{L} N_h = N \). A sample of size \(n_h \) is selected from the \(hth \) stratum following any sampling design to observe character \(y \). The total sample size \(\sum_{h=1}^{L} n_h = n \) is fixed in advance.

Let \(Y_{hi} \) be the value of the character \(y \) for the \(ith \) unit in the \(hth \) stratum, \(i = 1,2,.....,N_h, \ h = 1,2,.....,L \)

Define \(\bar{Y} = \sum_{h=1}^{L} W_h \bar{Y}_h \), where \(W_h = N_h / N \) and \(\bar{Y}_h = \frac{1}{N_h} \sum_{i=1}^{N_h} Y_{hi} \).

Under simple random sampling without replacement an unbiased estimate of population mean \(\bar{Y} \) is given by

\[
\bar{Y}_{st} = \sum_{h=1}^{L} W_h \bar{Y}_h ,
\]

where the sample mean of the \(hth \) stratum \(\bar{y}_h = \frac{1}{n_h} \sum_{i=1}^{n_h} y_{hi} \) is an unbiased estimate of \(\bar{Y}_h \). The sampling variance of \(\bar{Y}_{st} \) is given by

\[
V \bar{Y}_{st} = \sum_{h=1}^{L} \left(\frac{1}{n_h} - \frac{1}{N_h} \right) W_h^2 S_h^2 = \sum_{h=1}^{L} W_h^2 S_h^2 / n_h
\]

\[1\] e-mail:akpcs@rediffmail.com
2. OPTIMUM ALLOCATION UNDER MULTI-OBJECTIVES

Neyman(1934) proposed a method to determine optimum sample sizes for the strata by minimizing $V \bar{y}_{st}$, subject to $\sum_{h=1}^{L} n_h = n$ which gives

$$n_{h}^{1}_{o p t} = n \frac{W_{h}S_{h}}{\sum_{h} W_{h}S_{h}}, \ h = 1, \ldots, L.$$

Another optimum allocation(Ross,1961) may be derived by maximizing the stability of the estimated variance of the stratified estimate or otherwise by minimizing the variance of the estimated variance of \bar{y}_{st}, given by

$$V \ v \bar{y}_{st} = V\left[\sum_{h} W_{h}^{2} \left(\frac{1}{n_{h}} - \frac{1}{N_{h}} \right) s_{h}^{2}\right]$$

where s_{h}^{2} is the sample variance computed from the hth stratum. For large $N_{h} \ h = 1, \ldots, L$,

$$V \ v \bar{y}_{st} \approx \sum_{h=1}^{L} \frac{W_{h}^{4} S_{h}^{4}}{n_{h}^{3}} \beta_{2h} - 1$$

where β_{2h} is the coefficient of kurtosis of the character y under study in the hth stratum. The optimum sample sizes which minimize $V \ v \bar{y}_{st}$ using usual technique for fixed $\sum_{h} n_h = n$ is given by

$$n_{h}^{2}_{o p t} = n \frac{W_{h}S_{h} \beta_{2h} - 1^{1/4}}{\sum_{h} W_{h}S_{h} \beta_{2h} - 1^{1/4}}$$

Now we have two sets of optimum sample sizes $n_{h}^{1}_{o p t}$ and $n_{h}^{2}_{o p t}$, that is, one by minimizing the variance of the estimate and another by minimizing the variance of the estimated variance of the estimate for fixed sample size n. In this paper goal programming approach of finding compromise allocations is discussed and is compared with Chatterjee’s(1967) technique of finding compromise allocations.

3. COMPROMISE OPTIMUM ALLOCATIONS

The simplest one is due to Cochran(1963) to take average of two optimum allocations, if the allocations do not vary widely, that is,

$$n_{h}^{c}_{o p t} = \frac{n_{h}^{1}_{o p t} + n_{h}^{2}_{o p t}}{2}$$

Chatterjee (1967) suggested a compromise allocation for the multi-objects as

$$n_{h}^{c'}_{o p t} = n \frac{\sqrt{n_{h}^{1/2}_{o p t} + n_{h}^{2/2}_{o p t}}}{\sum \sqrt{n_{h}^{1/2}_{o p t} + n_{h}^{2/2}_{o p t}}}$$

This choice minimizes the proportional increase due to use of actual allocation n_{h} instead of optimum allocation,

$$\frac{1}{Lk} \sum_{j=1}^{k} \sum_{h=1}^{L} \left(\frac{n_{h} - n_{h}^{o p t}_{j}}{n_{h}} \right)^{2}$$

where k is the number of objectives and L is the number of strata.
Alternatively, one may obtain compromise solutions using **goal programming technique** setting the goal for each objective as the minimum variance under the individual optimum allocation. Goal programming was first formulated by Charnes, Cooper and Ferguson (1955) who considered its application in single objective linear programming problem and subsequently found many engineering and industrial applications (Sciederjans, 1995, Deb, 2001 and Jones and Tamiz, 2010) to find a compromise solution which simultaneously satisfy a number of goals or objectives to the extent possible. The main purpose behind the goal programming methodology is to find solutions to multi-objective problem when there does not exist solution which meets the targets in all objectives and the task therefore boils down to find solutions which minimize deviations from targets.

4. NUMERICAL ILLUSTRATION

Consider the following summary data (Table-1) pertaining to complete enumeration of 1000 villages in a certain district. The villages were stratified according to their agricultural area into four strata. The population values of the strata standard deviations and strata coefficients of kurtosis of the area under wheat are given below along with the values of strata sizes. Number of villages in the sample \(n = 340 \)

<table>
<thead>
<tr>
<th>Strata</th>
<th>Size (N_h)</th>
<th>(W_h)</th>
<th>(S_h)</th>
<th>(1) (\beta_{2h})</th>
<th>(2) (\beta_{2h})</th>
<th>(3) (\beta_{2h})</th>
<th>(4) (\beta_{2h})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>285</td>
<td>0.285</td>
<td>56.3</td>
<td>1.5</td>
<td>5.5</td>
<td>1.5</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>355</td>
<td>0.355</td>
<td>116.4</td>
<td>2.5</td>
<td>3.5</td>
<td>2.0</td>
<td>5.5</td>
</tr>
<tr>
<td>3</td>
<td>226</td>
<td>0.226</td>
<td>186.0</td>
<td>3.5</td>
<td>2.5</td>
<td>2.5</td>
<td>7.5</td>
</tr>
<tr>
<td>4</td>
<td>134</td>
<td>0.134</td>
<td>363.1</td>
<td>5.5</td>
<td>1.5</td>
<td>3.0</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Define \(V_1 = \sum W_h^2 S_h^2 / n_h \) and \(V_2 = \sum W_h^4 S_h^4 \beta_{2h} - 1 / n_h^3 \)

Case 1: \(\beta_{2h} = 1.5, 2.5, 3.5, 5.5 \)

The minimizing \(V_1 \) and \(V_2 \) separately the individual Neyman optimum allocations are respectively

\[n^1 = 37, 95, 96, 112 \text{ and } n^2 = 25, 85, 98, 132 \]

\[L_1 = V_1(\text{min}) = \frac{1}{n} \sum W_h S_h^2 = 64.47564 \]

\[L_2 = V_2(\text{min}) = \frac{1}{n^3} \sum W_h S_h^4 \beta_{2h} - 1^{\frac{1}{4}} = 28.50126 \]

For the application of goal programming the optimum values of \(n_1, n_2, n_3 \) and \(n_4 \) are, so as to satisfy the following goals.

\[\sum W_h^2 S_h^2 / n_h \geq 64.47564 \ (i.e. \ V_1(\text{min})) \]

\[\sum W_h^4 S_h^4 \beta_{2h} - 1 / n_h^3 \geq 28.50126 \ (i.e. \ V_2(\text{min})) \]

\[n_1 + n_2 + n_3 + n_4 = 340, \ 2 \leq n_1 \leq 285, \ 2 \leq n_2 \leq 355, \ 2 \leq n_3 \leq 226, \ 2 \leq n_4 \leq 134, \]

where \(n_1, n_2, n_3, n_4 \) are integers.

Using positive deviational variables we formulate the goal programming model as

Min: \(dp1 + dp2 \)

Subject to \(\sum W_h^2 S_h^2 / n_h - dp1 = 64.47564 \) and \(\sum W_h^4 S_h^4 \beta_{2h} - 1 / n_h^3 - dp2 = 28.50126 \)

with other constraints as above.

Using Lingo Software the compromise optimum values of \(n_h \)’s using goal programming model are:

\(n_1 = 29, n_2 = 88, n_3 = 97 \) and \(n_4 = 126 \).
The resulting variances V_1 and V_2 under compromise allocations using goal programming model are $V_{1c} = 65.28659$ and $V_{2c} = 28.93667$

The compromise solutions using Chatterjee's technique are $n_1 = 31$, $n_2 = 90$, $n_3 = 97$, $n_4 = 122$.

As such, the resulting variances are $V'_{1c} = 64.89865$ and $V'_{2c} = 29.55304$.

Table 2. Variances under different allocations

<table>
<thead>
<tr>
<th>Cases</th>
<th>Individual variances under Neyman optimum allocation</th>
<th>Variances under compromise allocation using goal programming</th>
<th>Variances under Chatterjee's compromise allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$V_{1\text{min}}$</td>
<td>$V_{2\text{min}}$</td>
<td>V_{1c}</td>
</tr>
<tr>
<td>Case 1</td>
<td>64.47564</td>
<td>28.50126</td>
<td>65.28659</td>
</tr>
<tr>
<td>Case 2</td>
<td>64.47564</td>
<td>17.85832</td>
<td>65.36542</td>
</tr>
<tr>
<td>Case 3</td>
<td>64.47564</td>
<td>16.34300</td>
<td>64.73394</td>
</tr>
<tr>
<td>Case 4</td>
<td>64.47564</td>
<td>71.89904</td>
<td>64.90418</td>
</tr>
</tbody>
</table>

Case 2: $\beta_2 = 5.5, 3.5, 2.5, 1.5$

Individual optimum values: $V_1(\text{min}) = 64.47564$ with $n = 37, 95, 96, 112$ and $V_2(\text{min}) = 17.85832$ with $n = 49, 109, 97, 85$

Compromise solutions using goal programming model are $n = 45, 103, 96, 96$ with resulting variances $V_{1c} = 65.36542$ and $V_{2c} = 18.40473$

As regards Chatterjee's compromise allocation, $n = 43, 102, 96, 99$ with variances $V'_{1c} = 65.04679$ and $V'_{2c} = 18.80187$.

Table 3. Loss of Relative Efficiency(%) of the compromise allocations compared to individual optimum allocations

<table>
<thead>
<tr>
<th>Cases</th>
<th>Allocation using goal programming</th>
<th>Allocation using Chatterjee's Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Goal 1</td>
<td>Goal 2</td>
</tr>
<tr>
<td>Case 1</td>
<td>1.2421</td>
<td>1.5047</td>
</tr>
<tr>
<td>Case 2</td>
<td>1.3612</td>
<td>2.9689</td>
</tr>
<tr>
<td>Case 3</td>
<td>0.3990</td>
<td>0.9999</td>
</tr>
<tr>
<td>Case 4</td>
<td>0.6603</td>
<td>0.1123</td>
</tr>
</tbody>
</table>

Case 3: $\beta_2 = 1.5, 2.0, 2.5, 3.0$

Individual optimum values: $V_1(\text{min}) = 64.47564$ with $n = 37, 95, 96, 112$ and $V_2(\text{min}) = 16.34300$ with $n = 28, 88, 99, 124$

Compromise solutions using goal programming model are $n = 32, 91, 98, 119$ with variance $V_{1c} = 64.73394$ and $V_{2c} = 16.50806$

Chatterjee's compromise solutions are computed as $n = 33, 92, 97, 118$ with variance $V'_{1c} = 64.64065$ and $V'_{2c} = 16.62011$.
Case 4: $\beta = 3.5, 5.5, 7.5, 9.5$

Individual optimum values: $V_1(\min) = 64.47564$ with $n = 37, 95, 96, 112$ and $V_2(\min) = 71.89904$ with $n = 30, 89, 99, 122$

Compromise solutions using goal programming model are $n = 31, 89, 99, 121$ with variance $V_{1c} = 64.90418$ and $V_{2c} = 71.97986$

Further, Chatterjee's compromise allocations are computed as $n = 34, 92, 97, 117$ with $V_{1c} = 64.58266$ and $V_{2c} = 73.04560$.

5. CONCLUSION

As the individual optimum allocations under two different objectives vary widely Cochran’s (1963) rule is not taken into account to compute compromise allocations and as such Chatterjee’s technique and goal programming technique for finding compromise allocations in multi-objective problem are compared through the given numerical illustration. The numerical illustration shows that the total loss of efficiency of the compromise allocations using goal programming model happens to be less than the total loss of efficiency using compromise allocations as proposed by Chatterjee (1967). As theoretical comparison between two alternative approaches is difficult to be carried out, further numerical investigations are necessary to arrive at some stable conclusions. The present paper is intended to suggest an alternative method of obtaining compromise solution following goal programming approach for multi-objective optimization.

REFERENCES