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ABSTRACT

In this work simultaneous confidence intervals for the variance components in the two-way balanced crossed random effects model with
interaction have been derived under the usual assumptions of normality and independence of random effects. The intervals are conservative in
the sense that the true confidence coefficient is as large as preassigned value. The formulas are illustrated using published data with SAS
outputs.
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RESUMEN

En este trabajo se derivan intervalos de confianza simultaneos para los componentes de la varianza en un modelo de efectos aleatorios
balanceado de dos vias cruzado con interaccién, bajo los supuestos usuales de normalidad e independencia de efectos aleatorios. Los intervalos
de confianza son conservadores en el sentido de que el verdadero coeficiente de confianza es tan grande como un valor preasignado. Las
férmulas son ilustradas usando datos publicados y se presentan salidas en SAS.

1. INTRODUCTION

Variance components are the different sources to the variation in an observation. Random effects and mixed linear models
are useful in applications that require accounting for components of variability arising from multiple sources. In the study
of random and mixed effects models, our interest lies primarily in making inferences about the variance components.
Variance components were first employed by Fisher (1918) in connection with genetic research on Mendelian laws of
inheritance. Tippett (1931) used variance components to determine a method of optimal sampling design. Daniels (1939)
discussed the application of variance components methodology to an investigation of factors that cause unevenness in wool.
Early applications of variance components were mainly in genetics and sampling design. Variance components have been
of importance in diverse fields of research and applications, for example in animal breeding studies, in biology, in
psychology, in industrial applications, behavioral and educational research, and medical research, among others. See,
among many others Rao (1997), Raudenbush et al. (2002), Searle et al. (1992), Verbeke and Molenberghs (2000).

Confidence intervals are needed to quantify the uncertainty associated with the point estimates. Confidence interval for
variance components have been an important topic of research for over 70 years. Numerous articles have been written on
this topic by many authors. See for instance, Arendacka (2005), Bottai and Orsini (2004), Burdick and Graybill (1984),
Burch and lyer (1997), Hartung and Knapp (2000), Taoufik et al. (2007). Most of these papers are concerned with
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developing exact or approximate confidence intervals for specified linear functions of variance components or their ratios.
A collection of confidence intervals for different functions of parameters based on the same sample is known as
simultaneous confidence intervals (Burdick and Graybill, 1992). The deluge of papers on various aspects of variance
components in last several years was in sharp contrast to the trickle of papers dealing with simultaneous confidence
intervals of variance components or the variance ratios (See bibliography by Sahai and Khurshid, 2005).

Hartley and Rao (1967) derived a general procedure for the construction of the exact confidence regions for the variance
ratios of a general mixed model. The main attribute of their confidence regions is their applicability for a general
unbalanced design that includes fixed effects as well as random effects. Their drawback is that these regions are functions
of the unknown variance components and are difficult to reduce the general formula to a simpler form even for the simple
balanced design models such as the three-stage nested and the two-way crossed classification random effects models.

Simultaneous confidence intervals for the ratios of variance components in balanced random models were proposed by
Broemeling (1969 a). Using Kimbal’s (1951) inequality Broemeling derived confidence regions for the variance ratios.
These regions are polygons and provide simultaneous confidence intervals for the variance ratios. However, the resulting
intervals are conservative, that is, the actual confidence level is greater than or equal to the pre-set value. See also
Broemeling (1969 b).

The exact confidence coefficients associated with Broemeling’s confidence regions were obtained by Sahai and Anderson
(1973) in terms of the upper tail of probability integrals of the inverted Dirichlet distribution. Simultaneous confidence
intervals for the variance components, excluding the residual component, in two-fold nested and two-way cross-
classification random models were derived by Sahai (1974) and are also conservative. Broemeling and Bee (1976), using
Kimball’s inequality, obtained similar regions for balanced incomplete block random model. Broemeling (1978) extended
one-sided simultaneous confidence intervals to two-sided. Tong (1979), however, showed that two-sided simultaneous
confidence intervals do not always hold true by giving counter-examples based on mixed linear models. Khuri (1981)
proposed a technique for the construction of simultaneous confidence intervals for the values of all continuous functions of
the variance components for a general balanced random model. This technique can be easily applied to a wide range of
functions that may be of interest to research workers. Confidence intervals obtained by this technique, however, are
conservative.

There are two SAS macros to compute simultaneous confidence intervals. The two macros, called %SimultanTests and
%Simultanintervals, are based on exact evaluations of the underlying multivariate ¢ distribution and are extensions of the
published macros %SimTests and %SimIntervals. The macros are widely applicable tools, see Fromke and Bretz (2004).

The description of two-way balanced crossed classification random effects model is available in the literature, see Sahai
and Ojeda (2004). Sahai (1974) considered three-stage nested random effects model and two-way crossed classification
random effects model without interaction and developed formulas for the simultaneous confidence intervals for variance
components excluding the error variance component. The technique is based on combining two or more intervals about the
function of parameters from the experimental data. Recently Sahai and Ojeda (2004) considered simultaneous confidence
intervals involving two-way crossed classification with and without interaction among others.

The object of present investigation is to develop simultaneous confidence intervals for the variance components of two-way
balanced crossed classification random effects model with interaction excluding the error variance component.

2. TWO-WAY BALANCED RANDOM EFFECTS MODEL WITH INTERACTION

The model can be written as

Y

ik

= u+ aq, +bj +7, ey =12,...,p;j=12,...,qandk=12,...,r) (1)

where — oo < g < o0 is the general constant and a,, bj, Vi and e, are mutually independent normal random variables

2

2 2 2 2 2
, and o, (0<o0,,0,,0,,0, <®). The parameters

with zero means and respective variances of,o*f,o—

2

2 2 2 .
o,,0, ,(77 and o, are known as variance components.

The usual sum of squares S2,S7, Sy2 and S? of ANOVA are independent and further
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2 2 2 2 2
Sa ~ (O-e + ro—y + qu-a )X[p-l] ! (2)

2 2 2 2 2

Sy~ (o, +ro, +pro, )X[q-l]’ 3
2 2 2 2

S, ~(6. +76,) Xiprguy (4)
2 2 2

Se ~(02) Xipgora» ()

where )([2,1] is central chi-square distribution with » degrees of freedom (d.f.)

Let
n = pq(r=1,n, =(p-D0g-1,n;=q-Ln, =p-1
le =;(Zz[a1;n4], 7522 =Zuz[a1;”4]a 7(32 :Z(Z[az;nz]l
2o = xelayin,), v = xllasng), e = xilas; ns),
B =F[-a;n,n], F,=F[1-a;n,n],
Fy=F[l-a,n,n), F,=F,[1-a,n,,n],
F.=F,[1-a,;n,,n), F, =F [1-a3; n;,n],
F,=F,l-a,n,n], Fy=F,([l-a,n,,n],
Fy = F[1-asiny,n,], Fiy = F,[1-ag;n;n,],

where y’[a;n] and y’[cr;n] are lower and upper y” -limits which enclose (1—c) probability of the distribution
with n d.f. and F,[1-a;n, n,] and F,[1—c;n, n,] are lower and upper limits of Snedecor’s F-distribution with #,

and n, d.f. which enclose (1— ) probability of the distribution.

Below we derive the simultaneous confidence intervals for (o2, a;‘), (o}, af) and (02,07, af) for known value of

2
O,.

e
. . . 2 2y - . 2 2
The simultaneous confidence interval for (o, o, ) is derived for the known values of o and o, .

2.1 Simultaneous confidence interval for (o, 072)

From (2), (4) and (5) the usual 100 (1- c,)% confidence intervals about parametric functions (o> + mf +qro?) and

(62/67 + qo’/c?) aregiven by

2 2
{S“Z <(cZ+ro’+qro?)< S“Z} (6)
X2 21
and
2 o’ 2 2
1 %—1 < | Z4q2e < 1 @—1 . ™
r\n,S;F, o, o; r\n,S;F,

Similarly the 100 (1 — &z, ) % confidence intervals about the parametric functions (o + raf) and af/ae2 are
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S? S?
{—y <(c?+ raf) < —7} (8)

n,S? o’ n,S?
1 -1 S—ZSE 1| ©)
r\n,S’F, o, 1 |\ n,S F,

From (6) and (8) a set of simultaneous confidence interval about (o> + mf +qro’) and (o + ra;) with confidence
coefficient (1— f3,) is

and

S2 S2 2 2
©< (ol +rol +qrol) <=4, —L <(ol+ro)) <1+, (10)

2 = 2 2
1 Xa X3

X2

where 1—- 5, = (1—-«,) (1-,). The equality holds because the intervals (6) and (8) are statistically independent.

2 2

o
From (7) and (9) a set of simultaneous confidence interval about [—Z+q—‘;] and 0'72 / O': with confidence
o o,

e

coefficient (1— 5, ) is

2 2 2 2
1 nl—Sﬂz_l < i+q05 Sl ﬂ_l ,i mS, _ _iﬁl S, — (11)
r\n,S’F, o o’ | r\nS’F r\ n,S’F, o’ r\n,S’F,

where 1- 5, >(1— ;)1 — ). The inequality using Kimbal’s (1951) result holds because the intervals (7) and (9) are
not independent. See also Miller (1967, p. 102).

2

e!

2 2 2 2
R (c?)= ((7210'2)51[5'“ —GZ]S(O'Z—FQO'Z)gl(S” _0-2}1 S_V_GZ < o2 Sl S, _o2 1.
¢ alTy 2 e 7 a 2 e 2 e v 2 .
r\ X2 r\ xi r\ ¥,

Thus for any fixed value of o>, a 100 (1- /3,)% confidence region for (2, 0'72) is

Similarly a 100(1— £,)% confidence region is

2 2 2 2
Ra(o) {w;,af 28 e gons [ 25 )
r

r \n,S’F,
2 S?2 2 S?2
Te| % _qlcgr<Ze) % 4]
r \ n,S’F, r | n,S;F,

. 2
For given value of o, we have

Pio?.02) e R(02) N R, (02) |02 |21~ - 5,
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Now the intersection of R,(c’) and R, (o) averaged over any distribution of o> gives

O-ezdF(Gez) 21-p - B,.

1
Pl(c?.62)e R, "R, }= [ P(c?,07) € R (67) N R, (07)
0

Thus the simultaneous confidence interval for (o2, O'f) determined by R, (c°?) with confidence coefficient (1— 3,) is

1(S? 1(S? 1 1
—|=5-0! |<o, < | —5-0 | Zfi(S:,S)) <o) <= £,(S;,S]) (12)
qr\ 1, gr\ x: r r
where
S? 2
£(52,52) =mind| 22 _ o ,(Sg_ajj
Xa X2
and
S? 2
£,(82,82) =miny| = -0 ,[S‘;—ajl.
3 X1

From R, (c?) the simultaneous confidence interval for (af,af) is

2 2 2 2 2 2
o n,S o n,S o o
{—e [1—;—1] <g’<—< ($—1], < g (S2,82.82) <o’ <~ gz(Sj,Sf,Sj‘)} (13)
gr \ n,S;F, r r

where
2
nS,

SZ
$2,52,82) = min _1) | 2 gL
gl( a Y e) n2S§F4 n4Se2F2

and

[ mS; S?
,(S2,52,5%) = min{| ——1——1|| 21
n,S, F; n,S;F,

For given sample results R,(c’) and R,(c’) will form a region of intersection which will be bounded by the
intersection of the upper limits and the intersection of the lower limits of (0'5,0'72) determined by R,(c?) and

2
RZ (Ge ) .
Thus the simultaneous confidence interval for (602 ) ayz) is given by

S*—n,S*F, S*—n,S’F,
2a “Ma0e T ¢ g2 < Ti2a TTae Tty (§2,87,82) < 02 < hy(S2,S2,82) |21- B, - B, (14)

P 2
nqr y, n,qr y,

where
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2 2
Iy (S2,57,57) = min{nlSV S Fy S, ‘”455F2},

2 ' 2
ngry, nary,

and

2 2
hz(Sf,Sf,Sf):min{nlsy S ks S, _n“SezFl}.

2 ' 2
nrys nrx

To illustrate the technique of constructing simultaneous confidence interval consider the example from Box and Tiao (1973,
p. 337).

We used SAS GLM to compute the Sum of Squares. The relevant portions of the output are displayed in Table 1.

General Linear Models Procedure
DATA krus;
INPUT driver car mile; Dependent Variable: MILE
CARDS;
1 1 32431 Source DF Sum of Squares Mean Square F Value Pr>F
1 1 31709 Model 80 1483.36569583 18.54207120  15.77  0.0001
........ Error 81 95.24601800 1.17587677
9 9 27638 Corrected Total 161 1578.61171383
9 9 27385
; R-Square C.V. Root MSE MILE Mean
proc gim; 0.939665 3.912204 1.08437852 27.71783951
class driver car;
model mile=driver car Source DF Type | SS Mean Square FValue Pr>F
driver*car;
random driver car DRIVER 8 1011.65496616 126.45687077  107.54 0.0001
driver*car; CAR 8 362.09848372 45.26231046 38.49 0.0001
run; DRIVER*CAR 64 109.61224595 1.71269134 1.46 0.0547
Source DF Type Il SS Mean Square F Value Pr>F
DRIVER 8 1011.65496616 126.45687077 107.54  0.0001
CAR 8 362.09848372 45.26231046 38.49  0.0001
DRIVER*CAR 64 109.61224595 1.71269134 146  0.0547
General Linear Models Procedure
Source Type Il Expected Mean Square
DRIVER Var(Error) + 2 Var(DRIVER*CAR) + 18 Var(DRIVER)
CAR Var(Error) + 2 Var(DRIVER*CAR) + 18 Var(CAR)
DRIVER*CAR  Var(Error) + 2 Var(DRIVER*CAR)

Table 1. SAS Applications: This application illustrates SAS GLM instructions and output.

Here p=q=9, r=2, S?=362.0985 S/ =1011.655, Sy2 =109.6123 and S’ =95.246. Thus n, =81,

n, =64, n, =8 and n, =8, choosing &; = a, = 0.02, and taking equal tail probabilities we get,

2t =1.646, y; =20.09, yZ =39.984, y2 =94.2709
i =1.646, y2 =20.09, F, =0.20, F, = 2.74,
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F, =0.5682, F, =1.70, F, = 0.20, F, = 2.74,
F, =0.1987, F, =2.79, F, = 0.1987, F,, = 2.79.

We used SAS VARCOMP and MIXED to estimate the variance components. The relevant portions of the output are
displayed in Tables 2 and 3.

The MIXED Procedure

DATA krus;

INPUT driver car mile; Covariance Parameter Estimates (REML)

CARDS;

1 1 32431 Cov Parm Estimate Std Error 4 Pr>|Z]|
1 1 31709

........ DRIVER 6.93023219 3.51273113 1.97 0.0485
9 9 27.638 CAR 2.41942328 1.25739891 1.92 0.0543
9 9 27.385 DRIVER*CAR 0.26840729 0.17734598 1.51 0.1302
; Residual 1.17587677 0.18477121 6.36  0.0001

proc mixed covtest;
class driver car;
model mile=;
random driver car

driver*car;

run;

Table 2. SAS Applications: This application illustrates SAS MIXED instructions and output.

Variance Components Estimation Procedure
DATA krus; MIVQUE(0) Variance Component Estimation Procedure
INPUT driver car mile;
CARDS; Source DRIVER CAR DRIVER*CAR
1 1 32431 DRIVER 2592.00000000 0.00000000 288.00000000
1 1 31709 CAR 0.00000000 2592.00000000 288.00000000
........ DRIVER*CAR  288.00000000 288.00000000 320.00000000
9 9 27.638 Error 144.00000000 144.00000000 160.00000000
9 9 27385
; Source Error MILE
proc varcomp; DRIVER 144.00000000 18209.78939089
class driver car; CAR 144.00000000 6517.77270689
model mile=driver car DRIVER*CAR  160.00000000 2966.73139165
driver*car; Error 161.00000000 1578.61171383
run; Estimate
Variance Component MILE
Var(DRIVER) 6.93023219
Var(CAR) 2.41942328
Var(DRIVER*CAR) 0.26840729
Var(Error) 1.17587677

Table 3. SAS Applications: This application illustrates SAS VARCOMP instructions and output.

Here 67 =1.1759, 67 = 0.2684, 6 =6.930 and & = 2.4194.
The simultaneous confidence intervals about the parametric function of 0'5, O'yz, and O'f are

P{1802 < (62 + 207 +1802) < 21998, 116 < (o7 +202) < 274f =096
and
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O_Z O_z 2
P{6.52 < | —+9—% /<9573, 0< — < 0.78; > 0.96.
O-e O-e Ue
The simultaneous confidence interval for (o, af) from (14) is
P{0.93 < 62 <12.15,0 < o7 < 0.83} > 0.92.

2.2 Simultaneous Confidence Interval For (O':, O'f)

The usual 100(1 — e, ) % confidence intervals about the parametric functions of &/, O'y2 and o’ are

S, S,
{"2 <(ol+ro’ + pro;) < ”2} (15)
Xe Xs
And
2 2 2 2
1 @— <[ Zip 1 @—1 (16)
r \ nyS; Fy o, o, r \(ngS;Fy

From (8) and (15) a set of simultaneous confidence intervals about the parametric function (062 +r af + pmf) and

(62 +r af) with confidence coefficient (1— £;) is

S2 S2 2 2

b 2 2 2 b 2 2

—ZS(O'e+r0'y+pr0'b)S—2,—y2S(0'e+r07)SZ—72 , (17)
4 3

Xb Xs

where 1— B, = (1— a3)(L— ,). Here the equality holds because the intervals (15) and (8) are independent.

2 2
o o
Similarly form (9) and (16) a set of simultaneous confidence interval about the parametric functions [—72 + p—l;] and
O-E O-e

2 2 - . - . .
o, | o with confidence coefficient (1— ,) is

2 2 2 2
mS ) %, o | L mSe g}t mSe g o 1 mS ) e
r\ n,S’F, o’ o’ r\ n,S’F, " r\ n,S’F, o’ 1|\ n,S’F,

where 1— £, > (1- ;)1 — ;). The inequality holds because the intervals (9) and (16) are not independent.

Thus for fixed value of &*, a 100 (1 — f3,)% confidence region for (o7, Gf) is

2 2 S2 S2
R,(c?) = (af,af):l[s—”z—afJé(af+po*§)£1(s—”2—afj,l ——ol|<o;} <1 — ol ||
"\ Xs "\ Xs P\ Xa r
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Also a 100 (1— f,)% confidence region is

2 S2 S2
R4(0§):{(55,6yz):%[£—2;—1 S(Uf+p0': SG oy ,
3%e” 6

Thus the simultaneous confidence interval for (o7, Uf) determined by R, (c>) with confidence (1— f3,) is

S? S?
{1(2_05%0; gl(b_gj}ifa(sj,sf)gaj gif‘l(s,f,sf)} (19)

rrizs prixé

where

S? S?2
£y (SZ, Sf):min —’2 -0’ |, (—1’2 '0'3] ,

Xa Xe
and

S? S2
fo (85, 87) =ming| % - 7 ’(_13-05] '

A3 As

Lo . 2 . . . 2 2 2y
Similarly for given value of ¢ the simultaneous confidence interval for (o, ,O'y) from R, (o) is

2 2 2 2
T [ M3 qlepr <O [ MO ]
pr \nyS:F pr \nyS?F

2 2
0; g:(S7. 8%, S <ol s"; g.(S;. 87, 53)}, (20)
where
) n,S? 92
g5(S;, S2, 82) =min ( ot A 1], (”l_zb _ 1} ,
Ny 'y nyS; Fy
and

n,S? 2
gu(57 5757 =min{| 50— a| [ Mo g
nZSeF3 n3SeF2

Now proceeding as in section (2.1) the simultaneous confidence interval for (05 ) af) is
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SZ —n,S’F, S? —n,S’F,
P{MaﬁSM,%(S,,Z,S;SCZ)sajsh4(sj,sj,sj) >1- B, B, (21)

noprys n, pryi

where

2 2
hy(S2,52,5%) = min{”lsf “rSele 1S, ~mSchy }

2 ' 2
CRA nyr xe

and

h,(S2,S? SZ)—min{nle ~mSeFy nS; _”ZSEZFS}
4 b1My 1 Me ) T '

2 ! 2
nrxs; nrxs
To illustrate the technique of constructing the simultaneous confidence intervals, consider the data given in Section 2.1.

The simultaneous confidence interval about the parametric functions (o> + 20‘y2 +1807) and (o’ + 20;') are

P{5035 < (02 +20% +1807) < 61461 116 < (o2 +202) < 274f = 0.96

and about the parametric functions af/ae2 + po}l/c? and af/a2 are

e

o, 9T o,
P{19.12<| —£ +9°L | < 268.35, 0<—- < 0.78{ > 0.96.
O-C 02 O-E

The simultaneous confidence interval for (sz ) ayz ) formed from the boundary intersections from (21) is
P{2.72<0? <34.08, 0< o2 <0.83}>0.92.
2.3 Simultaneous Confidence Interval For (O'f , 20'5 ,0'72)
From (6), (8) and (15) the simultaneous confidence interval about the parametric functions (0'e2 +r0'y2 +qr0'5),

(o7 + raf + pro?) and (o2 + raf) is

2 2 2 2
a 2 2 2 a b 2 2 2 b
{—zé(ae tro, +qro,)<—5,—5<(o, +ro, + pro,)<—,
1 Xe

X2 Zsz
2 S2
—L < (ol +ro)) 3—12}, (22)
Xa X3

where 1—- S, = (1- ;)1 —a,)(1— ;). The equality holds since the intervals (6), (8) and (15) are independent.

Similarly from (7), (9) and (16) a set of simultaneous confidence interval about the parametric functions
(0'72/0'82 +qo’lc?), (af/a:‘ + potllo?) and af/o;2 IS
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2
1 nlez “11< &4_[,6_5 _1 ﬂ_l (23)
r\ n,S?F, o’ o’ | r\n,S?F, ’

2 2 2
1 nS; 1 gﬂsl ns, |l
r\ n,S?F, o’ r\n,S’F,

e

where 1—- S, > (1— ;)1 — «,)(1— ;) . The inequality holds since the intervals (7), (9) and (16) are not independent.

Thus for fixed value of %, 2100 (1— f3;)% confidence region for (o2, o7, af) is

S?2 S?
Rs(af)z[(af,af,af):%( “Z—O':‘]S(O';‘+q0'f S%[ “2—0'32}

2

2 2 S2 S2
E(S—bz—O'EZJS(O'f+pof)£1(s—b2—ofj,1 —~ —o? Safél —~ -l |
"\ Xs "\ Xs F\ X4 "\ Xs

Also a 100 (1— )% confidence region is

2 2 2 2
S o n,S
R.(c®)=|(c?,02%, 02 :Ge nl—"—l <(6?+go?)<—e| e 1]
6( e) |:( a b }/) B n4S:F2 ( ¥ q a) B n4S62F;L
2 2 2 2 2 S2 2 SZ
9 —nl‘z” -1 s(af+pa§)sae —"“Zb _1, 2 nlj -1 SstJe nlj =i
r \ nyS;Fy r \ n,S;F; r \n,S’F, r\ n,S;F,

Now, proceeding as in Section 2.1 regardless of the true value of aez

P|:nlSa2 —n4S62F2 <ol < nlsj _”4Se2F1

mary, " maryi (24)
S2 _ 5. S?F S?2 _n.S°F
nsS, ngze 6 SGZSﬂl b naze 5 hs(Saz,sz,Syz,Sez)gajShe(Sj’sz'S;?’Sez) >1-p;
n,prys nprxs
where

)

2
(2, 52,52.57) = min{nlsy ~raSeLa S, 1Sy mS, =S F4}

2 ' 2 2
mry, nrye mry,
and

2
he(S2,57,52,5%) = min{nlsy ~iScFy mS, ~msScFy mS, ‘”4555}

2 ' 2 2
nrys nrys nry,
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Equation (24) gives the required simultaneous confidence interval for (o, o7, af).

To illustrate the technique of constructing the simultaneous confidence intervals, consider the data given in Section 2.1.

2

2
, and o, are

The simultaneous confidence intervals about the parameter functions of af ) af e

P{18.02 <(ol+20’ +180) < 219.98,50.35< (0} + 20 +180, ) <614,
1.16 < (07 +252) < 2.74}= 0.94

and
o, o’ o, ol

Pl652<| 2 +97¢ |<9573,19.12< —2 +97% | <268.35,0< 02 / o2 <0.78}> 0.94.
Ge Ge O-e Ge

The simultaneous confidence interval for (05 , abz , af) is
P{0.93< 02 <12.15,2.72 < o7 <34.08,0 < o < 0.83}> 0.88.
2.4 Simultaneous Confidence Interval for (o2, 07/)

The 100(1— «,)% confidence intervals about the parametric functions (o> + I”O'; +qro?) and 05/(062 + rO'f)

are
S? S?
{—“ZS (o’ +r0'72 +qro?) S—"Z} (25)
Ve y4)
and
S2 2 S2
el LSRN P I N LHE (26)
gri\ n,S, Fy o, +ro, qr\mSF,

The 100(1— c;)% confidence intervals about the parametric functions (o> + raf +pro?) and (o2 + raf) are

Sy Sy
{—”2 <(ol+ro, +pro;)< —"2} (27)
Ao s
and
i ﬁ_l So-—bzgi nZSbZ —1 1\, (28)
pr\n,SIF, ol+rol  pr{nS’Fy

From (25) and (27) a set of simultaneous confidence interval about the parametric functions (c)'e2 + I’O'; + qrof) and

(67 + ro-y2 + pro?) with confidence coefficient (1— f3,) is
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2

2 S2 2 S2
{ < (0l +ro) +qrol) < "2,—"23(05+raf+pr6b2)3—”} (29)
2 X1 Xs As

where 1- 3, = (1— e, )(1— ). The equality holds because the intervals (25) and (27) are independent.

Similarly from (26) and (28) a set of simultaneous confidence interval for the parametric functions 0'5 / (O'e2 + rayz)

and oyf/(o-e2 + rof) with confidence coefficient (1— f;) is
1 n,S? 1< ol <i n,S? 1
qr n4Sy2F8 ol + raf qr n4SfF7 ’

2 2 2
1 @_1 S%Si @_1, 30)
pri ngS, Fy o, +ro, pr\nS, F,

where 1—- 3 =2 (1-a,)(L— a5) . The inequality holds because the intervals (26) and (28) are not independent.

Now, for fixed value of (o + ra;') we construct a 100(1— 3,)% confidence region for (o> + &) as

X1

S? S?
i{—”—(G2 +r02)} <o} Si{—b—(az +r02)} :
2 e 4 b 2 e ¥
pPr i\ Xs pPr(Xs

2 2 > 2. 182 2 2 ,_ 182 2 2
R, (c; +ro;)=|(0,,0,):——5— (0. +ro,)) <o, <— —5—(0, +ro;) ¢,
qar X q

Similarly a 200(1— 3,)% confidence region for (>, 07) is given by

2 2 2 2 2
o, to n,S o, +ro S?2
Ry (O'ez‘H’O';): (62 +0ol): ! qu “1| <62 < y nzza 1
qr n4SyF8 qr n4S F7

4
2 2 2 2 2 2
o, t+ro, nsz 1] < 05 < o, tro, nsz Tl
pr nyS, Fiy pr nyS, Fy

Regardless of the true value of (o + ra;') the simultaneous confidence interval for (o> + o) is given by

2

2 2 2 2
n,S,; —n,S, Fy P n,Sy —n,S,F,

- <o} > :
n,qry, n,qry,
nszz —nSSfFlO <ol < nszZ —nsS;‘F9 S1-p. 5 31)
- b — - 7 8
n,prys n,prys

To illustrate the technique of constructing this simultaneous confidence intervals consider the data given in Section 2.1.
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The simultaneous confidence interval about the parametric functions (o> + 20;' +1807) and (o + 20y2 +1807) is
P {1802 < (62 + 207 +1802) < 21998, 5035 < (o2 + 202 +1807) < 614.61}.

Similarly the simultaneous confidence interval about the parameter functions O'j/(O'ez + raf) and O':/(O'j + I"O'yz)

is
o’ o’
Pl047<— "+ <064,141<— " <2058} >0.96.
(o +r0)) (0. +r0))

The simultaneous confidence interval for (05 , O':) from the boundary intersections is given by
P{089 < 5% <1212, 269 < 02 <34.05}> 092

with known values of 0'5 and 0'72.

3. CONCLUSION

We have developed simultaneous confidence intervals for the variance components of two-way balanced crossed
classification random effects model with interaction excluding the error variance component under the usual assumptions of
normality and independence of random effects. We have developed simultaneous confidence intervals about the parametric

. 2 2 2 . 2 2 2 2 2 2 2 2 2 2 2
function of o, o, and o, for instance (o, +ro; + pro,), (0,,0,), 0,/0; + po,/o; and o, /0, . The

technique has been based on combining intervals about the parametric functions of the parameters. The technique of
constructing these simultaneous confidence intervals had been illustrated considering SAS outputs of published data.
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