
 212

REVISTA INVESTIGACIÓN OPERACIONAL Vol. 26, No. 3, 2005

HARD PROBLEM GENERATION FOR MKP
María A. Osorio1 and Germán Cuaya
School of Computer Sciences, Universidad Autónoma de Puebla. Ciudad Universitaria, Puebla 72560, México

ABSTRACT
We developed generators that produce challenging MKP instances. Our approaches uses independently
exponential distributions over a wide range to generate the constraint coefficients, and the
corresponding average for each variable is used to calculate directly correlated coefficients in
the objective function. RHS values are a percentage of the sum of constraint coefficients. We present a
comparative table with the average performance of the most important generators reported in the
literature and our generators over a wide range of parameters and instances in the OR Library.

Key words: Multidimensional Knapsack Problem, Hard Problems Generation, Integer Programming.

RESUMEN
Desarrollamos generadores que producen alternativas que constituyen un reto para el MKP. Nuestro
enfoque utiliza independientemente distribuciones exponenciales sobre una gama amplia para generar
los coeficientes de las restricciones, y el promedio correspondiente para cada variable se usa para
calcular directamente los coeficientes correlacionados en la función objetivo. Los valores de RHS son
un porcentaje de la suma de coeficientes de las restricciones. Presentamos una tabla comparativa de la
media del desempeño de los generadores más importantes reportados en la literatura y nuestros
generadores sobre una gama amplia de parámetros y alternativas en la Biblioteca de IO.

MSC: 90C10.

1. INTRODUCTION

 In this paper, we present a methodology for hard problems generation for the NP-hard, Multidimensional
Knapsack Problem (MKP), which can be formulated as:

 Maximize z = ∑

∈Nj
jjxc (1)

 subject to ∑

∈Nj
iijxa ≤ bi i ∈ M (2)

 xj ∈ {0, 1}, j ∈ N (3)

where N = {1,2 ,…, n), M = {1,2 ,…, m}, cj ≥ 0, for all j ∈ N, aij ≥ 0, for all i ∈ M, j ∈ N. Each of the m
constraints of (2) is called a knapsack constraint.

 The Multidimensional Knapsack Problem has received wide attention from the operations research
community, because it embraces many practical problems (see Dantzig [1957], S. Gass [1997], Jeroslow and
Lowe [1988]). Applications include resource allocation in distributed systems, capital budgeting and cutting
stock problems (Pirkul [1987]). In addition, the MKP can be seen as a general model for any kind of binary
problems with positive coefficients (see Kochenberger et al. [974]).

 Most of the research on knapsack problems deals with the much simpler single constraint version (m = 1).
For the single constraint case the problem is not strongly NP-hard and effective approximation algorithms
have been developed for obtaining near-optimal solutions. A good review of the single knapsack problem and
its associated exact and heuristic algorithms is given by Martello and Toth [1990]). Important recent advances
are found in Martello, Toth and Pisinger [1999] and Pisinger [1999].

E-mail: 1aosorio}@cs.buap.mx

 213

 A critical point in algorithm development issue usually arises with the need of comparing their performance.
The set of benchmark problems is often comparatively small, and it is hard to be sure that a good
performance is not the result of good luck. Formal theorems on performance are solid, but are often hard to
come by and may not be relevant to practical problems. Algorithms can, of course, be tested on random
problems, but there is justifiable suspicion of such results, as random problems are not meaningful in
themselves. This work can be seen as a contribution in the sense of the "empirical science of algorithms"
[Hooker (1994)].

 While the way we generate the problems have got attention from the AI community (see Cheeseman,
Kanefsky and Taylor [1991], Garey and Johnson [1979], Gent and Walsh [1993], Gent and Walsh (1994]),
must people in the OR community seems to ignore these results and continue testing algorithms in random
generated instances. However, the concept of using the number of nodes in a searching tree as a measure of
hardness, has the origin in mathematical programming concepts and relies on the integer programming
formulation of the problem. For this reason, it has already been used with the same purpose by people from
the OR community (see Hooker et al. [1999] and Osorio et al. [2002]).

 The main purpose of this work is to bring together ideas from both communities and apply the concepts of
distribution used by the OR community to generate hard instances for MKP.

 To relate the experience obtained in this research, we structured the present paper in the following way. In
section 2, we introduce the problem generation methodologies used in the literature to generate MKP
instances. Section 3 present the generator proposed. In section 4, we present the computational experiments
performed and, in section 5, the conclusion.

2. PROBLEM GENERATION METHODOLOGIES

 Problem generation methodologies are currently a very important topic of research. A main part of applying
new techniques consists of empirically testing algorithm performance across a representative range of
problems. An inadequate set of test problems can provide misleading information about algorithm
performance.

 MKP problem generation has been intensively studied in the last decade. Using the gap as a measure of
hardness, Pirkul [1990] concludes that for a given number of constraints and a given degree of difficulty, the
gap reduces as the number of variables increases. For a given number of variables and a given degree of
difficulty, the gap increases as the number of constraints increases. Finally, holding the number of variables
and constraints constant, the gap increases as the degree of difficulty increases (in particular, as the
constraints become tighter).

 Martello et al. [1988] proposed a generator, for a single knapsack problem, that correlated the knapsack
coefficients with the objective function coefficients, inside a random uniform distribution. The objective
function values are obtained from a uniform distribution with a very wide range and the knapsack coefficients
have a variant of 10 over the objective value. The cj = U(0,1000) and the aij = U(cj – 10, cj + 10). The RHS is
obtained multiplying the sum of the knapsack coefficients by 0.8.

 Frèville and Plateau [1990] suggested a procedure for generating hard MKP problems. This procedure was
adopted by Chu and Beasley [1998] in the generation of the MKP dataset in the OR library. The approach
algorithm uses independently uniform random generation with an interval of (0,1000) for the coefficients in the
knapsacks, making aij = U(0,1000). It also averages the constraint coefficients of each variable to generate
the coefficient in the objective function, getting, in this way, a positive correlation between the constraint
coefficients and the objective. The cj, are equal to m/)a(

Mi
ij∑

∈

+ 500 U(0,10). This way of generating the

knapsacks provides dependence and a wide range in the coefficients, characteristics that contribute to the
hardness of these problems. The positive correlation between the objective and the knapsack coefficients,
even if highly influenced by the number of knapsacks in the problem, contributes for the problems hardness
(see Hill and Reilly [10]).

 Glover and Kochenberger [2000] used a uniform distribution in the range (0,10), multiplied by 51
and added 50. The knapsacks coefficients were obtained combining the objective coefficients with
numbers drawn form the uniform distribution with a range (0,10). The cj = 51 U(0,10) + 50 and the
aij = U(0,10) + 0.1 cj (1+U(0,10)).

 214

 Hill and Reilly [1996] presented an empirical study of the effects of coefficient correlation structure and
constraint slackness settings on the performance of solution procedures. This work examined synthetic two-
dimensional knapsack problems (2KP), and conducted tests on representative branch-and-bound and heuristic
procedures. Population correlation structure, and in particular the interconstraint component of the correlation
structure, was found to be a significant factor influencing the performance of algorithms. In addition, the
interaction between constraint slackness and population correlation structure was found to influence solution
procedure performance and independent sampling seems to provide information closer to median performance.
These results agree with prior studies. Tighter constraints and constraint coefficients with a wider range of
values yield harder problems, especially when both of these elements are combined in a problem.

 In a different setting, Laguna et al. [1995] developed a procedure to create hard problem instances for
MGAP (Multilevel Generalized Assignment Problems). This approach embodies a random problem generator,
labeled E, that draws constraint coefficients from an exponential distribution and generates the coefficients in
the objective function to be inversely correlated. The effectiveness of this approach for generating difficult
problems led us to consider adapting some of its features to the MKP setting.

3. HARD PROBLEM GENERATORS PROPOSED

 Combining all the ideas described above for generating hard problems, we developed several generators
that produces challenging MKP problems.

 For the first generator developed and introduced in Osorio et al. [2002], the approach uses independently
exponential distributions over a wide range to generate the constraint coefficients, and the corresponding
average for each variable is used to calculate directly correlated coefficients in the objective function.
The RHS values are set to 0.25 of the sum of the corresponding constraint coefficients for the first part of the
experiment, using the concept that tighter constraints yield difficult problems (Pirkul [1987] and Hill [2000]).
In the second the experiment, this multiple was set at 0.25, 0.5 and 0.75. For the third experiment, we added
0.8 to the tests.

 The first problem generator we used to create the random instances of MKPs is designed as follows.
The aij are integer numbers drawn from the exponential distribution aij = 1.0 – 1000 ln(U(0,1)), i ∈ M,
j ∈ N. Again, for each m-n combination, the right-hand side coefficients are set using the relation,
bi = ,a

Nj
ij∑

∈

α i ∈ M, where α is a tightness ratio and α =.25 for the first part of the experiment. In the second

part, α = .25 for the first ten problems, α = .5 for the next ten problems, α = 0.75 for the next ten problems and
α = 0.8 for the remaining ten problems. The objective function coefficients)sc(j′ were correlated to aij and

generated as: cj = 10)m/a(
Mi

ij∑
∈

 + 10 U(0,1), j ∈ N. In all cases, U(0,1) is a real number drawn form the

continuous uniform generator. This generator will be labeled as OSORIO in Tables 3 and 4.

 Looking for another generator with similar characteristics but with different correlation value, the problem
generator we used to create the random instances of MKPs is modified. The aij are integer numbers drawn,
again from the exponential distribution aij = 1.0 – 1000 ln(U(0,1)), i ∈ M, j ∈ N. For each m - n combination,
the right-hand side coefficients are set using the relation, bi = ,a

Nj
ij∑

∈

α where α is a tightness ratio α =.25 for

the first ten problems, α = .5 for the next ten problems, α = 0.75 for the next ten problems and , α = 0.8 for the
remaining ten problems. The objective function coefficients)sc(j′ were correlated to aij and include a

logarithmic element, now. They were generated as: cj = 100(10m/)a
Mi

ij −∑
∈

 ln(U(0,1). In all cases, U(0,1) is a

real number drawn form the continuous uniform generator. This generator will be labeled CUAYA in
Tables 3 and 4.

 Finally, we decided to substitute the logarithm function by a square root to create the random instances and
study its behavior. The aij are integer numbers drawn from the distribution aij = 32000*U(0,1)1/2, i ∈ M, j ∈ N.
For each m-n combination, the right-hand side coefficients are set using the relation, bi = ,a

Nj
ij∑

∈

α i ∈ M,

where α is a tightness ratio and α =.25 for the first part of the experiment. In the second part, α =.25 for the
first ten problems, α = .5 for the next ten problems and α = 0.75 for the remaining ten problems. The objective

 215

function coefficients)sc(j′ were correlated to aij. They were generated as: cj = 10(∑
∈Mi

ij m/)a(+ 10 U(0,1). In all

cases, U(0,1) is a real number drawn form the continuous uniform generator. This generator will be labeled
CUAYA1 in Tables 3 and 4.

4. COMPUTATIONAL RESULTS

 We report three experiments. The first experiment was performed on a Pentium III with 500 MHz and
128 Mb in RAM, using CPLEX V6.5.1 installed on Windows 98. This experiment used the OSORIO generator.
We used the number of nodes in the searching tree, needed by CPLEX as measures of hardness for the
instances generated in this way. The average number of nodes, in 10 instances, needed to solve a problem
with 100 variables, 5 constraints and a tightness of 0.25 for the OR-Library problems is 36,434.2 and the
solution time 54.234 seconds. For a problem with the same characteristics using the OSORIO generator, the
average number of nodes is 1,313,857 and the average solution time 14,304.5 seconds.

 For the first experiment we chose problems consisting of 100 variables, 5 constraints and α = 0.25. These
settings generate problems that can usually be solved to optimality in less than three hours. We generated 30
problems and allowed each one to run without a limit on solution time. From the 30 instances, CPLEX could
solve only 19 instances to optimality in less than three hours. In table 1, we show the sample characteristics
and the average number of nodes and the CPU time needed by CPLEX to get optimality. The average
solution time needed by CPLEX is 15937.49.

Table 1. Results for OSORIO with instances with 100 variables, 5 constraints and a tightness of 0.25.

Statistics Corr. Coef. Objective NODES CPUTime
AVERAGE 0.448163 2514.2 1312649 15937.49

STD. DESV. 0.032846 109.5 573885.9 20596.75

MAXIMUM 0.498274 2634 2745544 62161.90

MINIMUM 0.376742 2243 643594 229.87

SUM 75425 39379470 478124.70

 For the second the experiment, we concentrated in problems with 5 constraints and 100, 250 and 500
variables, and examined tightness values of 0.25, 0.5 and 0.75 for OSORIO’s generator. These problems
were solved using CPLEX V 6.5.2 without modifying its default parameters. We allowed a maximum solution
time of 3 hours (10,800 secs) and a memory tree size of 250 Mb. We reported the objective value obtained,
the number of problems solved to optimality with a gap of 0.0001 and the number of problems finished when
the time or the tree size memory were exceeded. We also reported the average gap value.

Table 2. Computational results for OSORIO.

Finished by Number
Variables α

Obj.
Value GAP # Prob

Finish. Time Memory
100 0.25 2504 0.0024 5 5 0

100 0.5 5081 0.0059 0 0 10

100 0.75 7761 0.0048 0 0 10

250 0.25 2665 0.0044 0 0 10

250 0.5 5312 0.0024 0 1 9

250 0.75 7928 0.0022 0 0 10

500 0.25 2875 0.0026 0 0 10

500 0.5 5674 0.0014 0 0 10

500 0.75 8380 0.0010 5 6 10

Total 48192 5 6 79

Average 5355 0.0030

 216

 The third experiment was performed using the most representative generators in the literature (Frèville and
Plateau [1990], Glover and Kochenberger [1996], Martello and Toth [1990], and the generators proposed
here with its variants, labeled as OSORIO, CUAYA and CUAYA1). For Martello’s generator, we made an
adaptation from problems with a single knapsack to problems with multiple knapsacks, and tested it with
different values of α (he only reported values of 0.8). This experiment was performed in a Pentium IV with
256 Mb RAM and 1.8 GHz using CPLEX V 8.1. We tested 10 instances with 100 variables and 10 constraints
for a tightness (α) equal to 0.25, 0.5, 0.75, and 0.8 and reported average values. For each m-n combination,
the right-hand side coefficients are set using the relation, bi = ,a

Nj
ij∑

∈

α i ∈ M, where α is a tightness ratio. The

equations used to obtain the saij′ and the sc j′ in each case, were:

Table 3. Equations to generate coefficients aij and xj with different generators.

 We allowed a total time of 3 hours of CPU for each problem and reported the number of problems solved to
optimality, the number of problems that could not be solved in three hours and the number of problems that
could not be solved because of the lack of memory in the computer. Results for these generators are shown
in Table 4.

 We are using the number of nodes as a measure of the "hardness" of the problems. This measure
correspond to the general measure of hardness of an integer problem, studied by Hooker [1994],[2003], y
Hooker and Osorio[1999]. He concluded that the search tree size, expressed by the number of nodes, is
relatively an intrinsic measure because it does not depend on most of the details of the software. The main
problem is that it depends on the branching rule, but we can solve problems using the same branching rule
and platform. It may be, sometimes, done for two or three branching rules to see if it affects the relative
results.

 On the other hand, the gap is the relative distance between the best integer found in the branch and bound
tree and the LP value of the best unexplored node in the tree. It may be used as an approximation to know
the quality of the solution when the process is interrupted. The average gap of the instances that have to be
interrupted after three hours of CPU is presented in Table 4.

 The results obtained with all the generators presented, enforce the same ideas presented in the paper and
obtained by other authors [1994] about the elements that make a problem hard to solve. From all the
characteristics mentioned in the paper, the exponential distribution in the coefficients made the biggest
contribution to the hardness of the problems presented. Generators OSORIO, CUAYA and CUAYA1 were,
systematically, generating instances that had a very big number of nodes in the searching tree and could not
be totally solved in less than three hours of CPU.

GENERATOR aij, i ∈ M, j ∈ N cj, j ∈ N

Martello U(cj –10, cj + 10) U(0,1000)

Frèvile U(0,1000) ∑
∈Mi

ij)a(/m + 500 U(0,10)

Glover U(0,10) + 0.1cj(1 + U(0,10) 51 U(0,10) + 50

OSORIO 1.0 – 1000 ln(U(0,1)) 10 ∑
∈Mi

ij)a(/m + 10 U(0,1)

CUAYA 1.0 – 1000 ln(U(0,1)) 100 m/)a(
Mi

ij∑
∈

+ 10 ln(U(0,1)

CUAYA1 32000 U(0,1)½ 10 m/)a(
Mi

ij∑
∈

+ 10 U(0,1)

 217

Table 4. Results for instances with 100 variables and 5 constraints.

Finished by
Generator α Correlation Solution

time Nodes GAP # Prob
Finish. Time Memory

Frèville 0.25 0.3192356 35.116 47000.7 10 0 0

Glover 0.25 0.7037480 2.246 3081.7 10 0 0

Martello 0.25 0.7037480 35.451 49464.8 10 0 0

OSORIO 0.25 0.4674919 12361.200 9950703.9 0.001026 0 8 2

CUAYA 0.25 0.2173587 123000000 9857093.3 0.000943 0 9 1

CUAYA1 0.25 - 0.8531521 12750.900 9893667.2 0.000583 0 8 2

Frèville 0.5 0.3192356 23.986 31203.6 10 0 0

Glover 0.5 0.7037480 2.210 3027.7 10 0 0

Martello 0.5 0.9998064 26.393 38761.9 10 0 0

OSORIO 0.5 0.4674919 12503.700 9896030.7 0.000471 0 8 2

CUAYA 0.5 0.2173587 12853.500 9824380.3 0.000449 0 9 1

CUAYA1 0.5 - 0.8531521 12267.100 9982488.3 0.000320 0 9 1

Frèville 0.75 0.3192356 13.643 17635.1 10 0 0

Glover 0.75 0.7037480 1.549 1922.8 10 0 0

Martello 0.75 0.9998064 5.069 7580.9 10 0 0

OSORIO 0.75 0.4674919 11907.800 9234448.1 0.0002912 1 9 0

CUAYA 0.75 0.2173587 12280.600 9742883.5 0.0003150 0 10 0

CUAYA1 0.75 - 0.8531521 11108.800 8587458.6 0.0002074 1 9 0

Frèville 0.8 0.3192356 10.050 13231.1 10 0 0

Glover 0.8 0.7037480 0.824 940.6 10 0 0

Martello 0.8 0.9998064 6.512 9429.4 10 0 0

OSORIO 0.8 0.4674919 12700.300 9606857.2 0.0002855 1 9 0

CUAYA 0.8 0.2173587 12361.300 9554086.9 0.0002710 0 10 0

CUAYA1 0.8 - 0.8531521 12303.100 9698323.3 0.0002015 0 10 0

5. CONCLUSIONS

 The results show that the problems generated with exponential distributions, usually need a greater number
of nodes in the searching tree and CPU time to be solved to optimality for most of the instances. These
results highlight the need to combine efforts from the AI and OR fields to explore more in detail the behavior
of combinatorial problems to get more information about the settings that make “hard” problems really hard
for MKP.

REFERENCES

CHEESEMAN, P.; B. KANEFSKY and W.M. TAYLOR (1991):"Where the Really Hard Problems
Are", in Proceedings of the 12th JCAI, International Joint Conference on Artificial
Intelligence, 331-337.

 CHU, P. and J. BEASLEY (1998): “A Genetic Algorithm for the Multidimensional Knapsack Problem”,

Journal of Heuristics, 4, 63-86.

DANTZIG, G.B. (1957): “Discrete Variables Problems”, Operations Research 5, 266-277.

 218

FRÉVILLE, A. and G. PLATEAU (1990): "Hard 0-1 Multiknapsack Test Problems for Size Reduction
Methods", Investigación Operativa 1, 251-270.

GAREY, M. and D. JOHNSON (1979): Computers and Intractability, W.H. Freeman, San Francisco.

GASS, S. (ed.), (1977): Encyclopedy of Operations Research and Management Sciences,

Kluwer Academic Publishers, New York.

GENT, I.P. and T. WALSH, (1993): "An empirical analysis of search in GSAT", Journal of Artificial

Intelligence Research, 1 47-59.

GENT, I.P. and T. WALSH (1994): "Easy problems are sometimes hard", Artificial Intelligence 70,

335-345.

GLOVER, F. and G.A. KOCHENBERGER (1996): “Critical Event Tabu Search for Multidimensional

Knapsack Problems”. In I.H. Osman and J.P. Kelly (eds.), Meta-Heuristics: Theory and
Applications. Kluwer Academic Publishers, 407-427.

HILL, R. and CH. REILLY (2000): "The Effects of coefficient correlation Structure in Two-

Dimensional Knapsack Problems on solution Procedure Performance", Management
Science 46, 302-317.

HOOKER, J.N. (1994): “Logic-based methods for optimization”, in A. Borning, ed., Principles and

Practice of Constraint Programming, Lecture Notes in Computer Science 874, 336-349.

____________ (1994): “Needed: An Empirical Science of Algorithms”, Operations Research 42,

201-212.

____________ (2003): “A Framework for combining solution methods”, Working Paper, Carnegie

Mellon University.

HOOKER, J.N. and M.A. Osorio (1999): “Mixed Logical/Linear Programming”, Discrete Applied

Mathematics 96-97, 395-442.

JEROSLOW, R.E. and J. K. LOWE (1984): "Modeling with integer variables", Mathematical

Programming Studies 22, 167-184.

KOCHENBERGER, G.; G. McCARL and F. WYMANN (1974): “A Heuristic for General Integer

Programming”, Decision Sciences 5, 36-44.

LAGUNA, M.; J.P. KELLY; J.L. GONZÁLEZ-VELARDE and F. GLOVER (1995): "Tabu search for the

multilevel generalized assignment problem", European Journal of Operational Research
82, 176-189.

 MARTELLO, S. and P. TOTH (1990): Knapsack Problems: Algorithms and Computer

Implementations. John Wiley & Sons, New York.

MARTELLO, S.; D. PISINGER and P. TOTH (1999): “New Trends in Exact Algorithms for the 0-1

Knapsack Problem”, European Journal of Operational Research 123(1999), 325-336.

OSORIO, M.A.; F. GLOVER and P. HAMMER (2002): “Cutting and Surrogate Constraint Analysis

for Improved Multidimensional Knapsack Solutions”, Annals of Operations Research 117,
71-93.

PIRKUL, H. (1987): “A Heuristic solution Procedure for the Multiconstraint Zero-One Knapsack

Problem”, Naval Research Logistics 34, 161-172.

PISINGER, D. (1999): “Contributed Research Articles: A Minimal Algorithm for the Bounded

Knapsack Problem”, ORSA Journal on Computing 12, 75-84.

