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ABSTRACT 
We developed generators that produce challenging MKP instances. Our approaches uses independently 
exponential distributions over a wide range to generate the constraint coefficients, and the 
corresponding average for each variable is used to calculate directly correlated coefficients in  
the objective function. RHS values are a percentage of the sum of constraint coefficients. We present a 
comparative table with the average performance of the most important generators reported in the 
literature and our generators over a wide range of parameters and instances in the OR Library. 
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RESUMEN 
Desarrollamos generadores que producen alternativas que constituyen un reto para el MKP. Nuestro 
enfoque utiliza independientemente distribuciones exponenciales sobre una gama amplia para generar 
los coeficientes de las restricciones, y el promedio correspondiente para cada variable se usa para 
calcular directamente los coeficientes correlacionados en la función objetivo. Los valores de RHS son 
un porcentaje de la suma de coeficientes de las restricciones. Presentamos una tabla comparativa de la 
media del desempeño de los generadores más importantes reportados en la literatura y nuestros 
generadores sobre una gama amplia de parámetros y alternativas en la Biblioteca de IO.  
 
MSC: 90C10. 

 
1. INTRODUCTION 
 
 In this paper, we present a methodology for hard problems generation for the NP-hard, Multidimensional 
Knapsack Problem (MKP), which can be formulated as: 
  
      Maximize  z = ∑

∈Nj
jjxc        (1) 

                                          
      subject to ∑

∈Nj
iijxa ≤ bi i ∈ M                (2) 

                             
                xj ∈ {0, 1},  j ∈ N             (3) 
 
where N = {1,2 ,…, n), M = {1,2 ,…, m}, cj ≥ 0, for all j ∈ N, aij ≥ 0, for all i ∈ M, j ∈ N. Each of the m 
constraints of (2) is called a knapsack constraint. 
 
 The Multidimensional Knapsack Problem has received wide attention from the operations research 
community, because it embraces many practical problems (see Dantzig [1957], S. Gass [1997], Jeroslow and 
Lowe [1988]). Applications include resource allocation in distributed systems, capital budgeting and cutting 
stock problems (Pirkul  [1987]). In addition, the MKP can be seen as a general model for any kind of binary 
problems with positive coefficients (see Kochenberger et al. [974]). 
 
 Most of the research on knapsack problems deals with the much simpler single constraint version (m = 1). 
For the single constraint case the problem is not strongly NP-hard and effective approximation algorithms 
have been developed for obtaining near-optimal solutions. A good review of the single knapsack problem and 
its associated exact and heuristic algorithms is given by Martello and Toth [1990]). Important recent advances 
are found in Martello, Toth and Pisinger [1999] and Pisinger [1999]. 
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 A critical point in algorithm development issue usually arises with the need of comparing their performance. 
The set of benchmark problems is often comparatively small, and it is hard to be sure that a good 
performance is not the result of good luck. Formal theorems on performance are solid, but are often hard to 
come by and may not be relevant to practical problems. Algorithms can, of course, be tested on random 
problems, but there is justifiable suspicion of such results, as random problems are not meaningful in 
themselves. This work can be seen as a contribution in the sense of the "empirical science of algorithms" 
[Hooker (1994)]. 
 
 While the way we generate the problems have got attention from the AI community (see Cheeseman,  
Kanefsky and Taylor [1991], Garey and Johnson [1979], Gent and  Walsh [1993], Gent and  Walsh (1994]), 
must people in the OR community seems to ignore these results and continue testing algorithms in random 
generated instances. However, the concept of using the number of nodes in a searching tree as a measure of 
hardness, has the origin in mathematical programming concepts and relies on the integer programming 
formulation of the problem. For this reason, it has already been used with the same purpose by people from 
the OR community (see Hooker et al. [1999] and Osorio et al. [2002]). 
 
 The main purpose of this work is to bring together ideas from both communities and apply the concepts of 
distribution used by the OR community to generate hard instances for MKP.  
 
 To relate the experience obtained in this research, we structured the present paper in the following way. In 
section 2, we introduce the problem generation methodologies used in the literature to generate MKP 
instances. Section 3 present the generator proposed. In section 4, we present the computational experiments 
performed and, in section 5, the conclusion.  
 
2. PROBLEM GENERATION METHODOLOGIES 
 
 Problem generation methodologies are currently a very important topic of research. A main part of applying 
new techniques consists of empirically testing algorithm performance across a representative range of 
problems. An inadequate set of test problems can provide misleading information about algorithm 
performance.  
 
 MKP problem generation has been intensively studied in the last decade. Using the gap as a measure of 
hardness, Pirkul [1990] concludes that for a given number of constraints and a given degree of difficulty, the 
gap reduces as the number of variables increases. For a given number of variables and a given degree of 
difficulty, the gap increases as the number of constraints increases. Finally, holding the number of variables 
and constraints constant, the gap increases as the degree of difficulty increases (in particular, as the 
constraints become tighter). 
 
 Martello et al. [1988] proposed a generator, for a single knapsack problem, that correlated the knapsack 
coefficients with the objective function coefficients, inside a random uniform distribution. The objective 
function values are obtained from a uniform distribution with a very wide range and the knapsack coefficients 
have a variant of 10 over the objective value. The cj = U(0,1000) and the aij = U(cj – 10, cj + 10).   The RHS is 
obtained multiplying the sum of the knapsack coefficients by  0.8. 
 
 Frèville and Plateau [1990] suggested a procedure for generating hard MKP problems. This procedure was 
adopted by Chu and Beasley [1998] in the generation of the MKP dataset in the OR library. The approach 
algorithm uses independently uniform random generation with an interval of (0,1000) for the coefficients in the 
knapsacks, making aij = U(0,1000). It also averages the constraint coefficients of each variable to generate 
the coefficient in the objective function, getting, in this way, a positive correlation between the constraint 
coefficients and the objective. The cj, are equal to m/)a(

Mi
ij∑

∈

+ 500 U(0,10). This way of generating the 

knapsacks provides dependence and a wide range in the coefficients, characteristics that contribute to the 
hardness of these problems. The positive correlation between the objective and the knapsack coefficients, 
even if highly influenced by the number of knapsacks in the problem, contributes for the problems hardness 
(see Hill and Reilly [10]).  
 
 Glover and Kochenberger [2000] used a uniform distribution in the range (0,10), multiplied by 51  
and added 50. The knapsacks coefficients were obtained combining the objective coefficients with  
numbers drawn form the uniform distribution with a range (0,10). The cj = 51 U(0,10) + 50 and the  
aij = U(0,10) + 0.1 cj (1+U(0,10)).  
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 Hill and Reilly [1996] presented an empirical study of the effects of coefficient correlation structure and 
constraint slackness settings on the performance of solution procedures. This work examined synthetic two-
dimensional knapsack problems (2KP), and conducted tests on representative branch-and-bound and heuristic 
procedures. Population correlation structure, and in particular the interconstraint component of the correlation 
structure, was found to be a significant factor influencing the performance of algorithms. In addition, the 
interaction between constraint slackness and population correlation structure was found to influence solution 
procedure performance and independent sampling seems to provide information closer to median performance. 
These results agree with prior studies. Tighter constraints and constraint coefficients with a wider range of 
values yield harder problems, especially when both of these elements are combined in a problem. 
 
 In a different setting, Laguna et al. [1995] developed a procedure to create hard problem instances for 
MGAP (Multilevel Generalized Assignment Problems). This approach embodies a random problem generator, 
labeled E, that draws constraint coefficients from an exponential distribution and generates the coefficients in 
the objective function to be inversely correlated. The effectiveness of this approach for generating difficult 
problems led us to consider adapting some of its features to the MKP setting. 
 
3. HARD PROBLEM GENERATORS PROPOSED 
 
 Combining all the ideas described above for generating hard problems, we developed several generators 
that produces challenging MKP problems.  
 
 For the first generator developed and introduced in Osorio et al. [2002], the approach uses independently 
exponential distributions over a wide range to generate the constraint coefficients, and the corresponding 
average for each variable is used to calculate directly correlated coefficients in the objective function.  
The RHS values are set to 0.25 of the sum of the corresponding constraint coefficients for the first part of the 
experiment, using the concept that tighter constraints yield difficult problems (Pirkul [1987] and Hill [2000]).  
In the second the experiment, this multiple was set at 0.25, 0.5 and 0.75. For the third experiment, we added 
0.8 to the tests. 
 
 The first problem generator we used to create the random instances of MKPs is designed as follows.  
The aij are integer numbers drawn from the exponential distribution aij = 1.0 – 1000 ln(U(0,1)), i ∈ M,  
j ∈ N. Again, for each m-n combination, the right-hand side coefficients are set using the relation,  
bi = ,a

Nj
ij∑

∈

α i ∈ M, where α is a tightness ratio and α =.25 for the first part of the experiment. In the second 

part, α = .25 for the first ten problems, α = .5 for the next ten problems, α = 0.75 for the next ten problems and 
α = 0.8 for the remaining ten problems. The objective function coefficients )sc( j′  were correlated to aij and 

generated as: cj = 10 )m/a(
Mi

ij∑
∈

 + 10 U(0,1), j ∈ N. In all cases, U(0,1) is a real number drawn form the 

continuous uniform generator. This generator will be labeled as OSORIO in Tables 3 and 4. 
 
 Looking for another generator with similar characteristics but with different correlation value, the problem 
generator we used to create the random instances of MKPs is modified. The aij are integer numbers drawn, 
again from the exponential distribution aij = 1.0 – 1000 ln(U(0,1)), i ∈ M, j ∈ N. For each m - n combination, 
the right-hand side coefficients are set using the relation, bi = ,a

Nj
ij∑

∈

α  where α is a tightness ratio α =.25 for 

the first ten problems, α = .5 for the next ten problems, α = 0.75 for the next ten problems and , α = 0.8 for the 
remaining ten problems. The objective function coefficients )sc( j′  were correlated to aij and include a 

logarithmic element, now. They were generated as: cj = 100( 10m/)a
Mi

ij −∑
∈

 ln(U(0,1). In all cases, U(0,1) is a 

real number drawn form the continuous uniform generator. This generator will be labeled CUAYA in  
Tables 3 and 4. 
 
 Finally, we decided to substitute the logarithm function by a square root to create the random instances and 
study its behavior. The aij are integer numbers drawn from the distribution aij = 32000*U(0,1)1/2, i ∈ M, j ∈ N. 
For each m-n combination, the right-hand side coefficients are set using the relation, bi = ,a

Nj
ij∑

∈

α i ∈ M, 

where α is a tightness ratio and α =.25 for the first part of the experiment. In the second part, α =.25 for the 
first ten problems, α = .5 for the next ten problems and α = 0.75 for the remaining ten problems. The objective 
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function coefficients )sc( j′  were correlated to aij. They were generated as: cj = 10( ∑
∈Mi

ij m/)a( + 10 U(0,1). In all 

cases, U(0,1) is a real number drawn form the continuous uniform generator.  This generator will be labeled 
CUAYA1 in Tables 3 and 4.  
 
4. COMPUTATIONAL RESULTS 
 
 We report three experiments. The first experiment was performed on a Pentium III with 500 MHz and  
128 Mb in RAM, using CPLEX V6.5.1 installed on Windows 98. This experiment used the OSORIO generator. 
We used the number of nodes in the searching tree, needed by CPLEX as measures of hardness for the 
instances generated in this way. The average number of nodes, in 10 instances, needed to solve a problem 
with 100 variables, 5 constraints and a tightness of 0.25 for the OR-Library problems is 36,434.2 and the 
solution time 54.234 seconds. For a problem with the same characteristics using the OSORIO generator, the 
average number of nodes is 1,313,857 and the average solution time 14,304.5 seconds.  
 
 For the first experiment we chose problems consisting of 100 variables, 5 constraints and α = 0.25. These 
settings generate problems that can usually be solved to optimality in less than three hours. We generated 30 
problems and allowed each one to run without a limit on solution time. From the 30 instances, CPLEX could 
solve only 19 instances to optimality in less than three hours. In table 1, we show the sample characteristics 
and the average number of nodes and the CPU time needed by CPLEX to get optimality. The average 
solution time needed by CPLEX is 15937.49. 
 

Table 1. Results for OSORIO with instances with 100 variables, 5 constraints and a tightness of  0.25. 
 

Statistics Corr. Coef. Objective NODES CPUTime 
AVERAGE 0.448163 2514.2 1312649 15937.49 

STD. DESV. 0.032846 109.5 573885.9 20596.75 

MAXIMUM 0.498274 2634 2745544 62161.90     

MINIMUM 0.376742 2243 643594 229.87 

SUM  75425 39379470 478124.70 
 
 For the second the experiment, we concentrated in problems with 5 constraints and 100, 250 and 500 
variables, and examined tightness values of 0.25, 0.5 and 0.75 for OSORIO’s generator. These problems 
were solved using CPLEX V 6.5.2 without modifying its default parameters. We allowed a maximum solution 
time of 3 hours (10,800 secs) and a memory tree size of 250 Mb. We reported the objective value obtained, 
the number of problems solved to optimality with a gap of 0.0001 and the number of problems finished when 
the time or the tree size memory were exceeded. We also reported the average gap value. 

Table 2. Computational results for OSORIO. 

Finished by Number 
Variables α 

Obj. 
Value GAP # Prob 

Finish. Time Memory 
100 0.25 2504 0.0024 5 5 0 

100 0.5 5081 0.0059 0 0 10 

100 0.75 7761 0.0048 0 0 10 

250 0.25 2665 0.0044 0 0 10 

250 0.5 5312 0.0024 0 1 9 

250 0.75 7928 0.0022 0 0 10 

500 0.25 2875 0.0026 0 0 10 

500 0.5 5674 0.0014 0 0 10 

500 0.75 8380 0.0010 5 6 10 

Total  48192  5 6 79 

Average  5355 0.0030    
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 The third experiment was performed using the most representative generators in the literature (Frèville and 
Plateau [1990], Glover and Kochenberger [1996], Martello and Toth [1990], and the generators proposed 
here with its variants, labeled as OSORIO, CUAYA and CUAYA1). For Martello’s generator, we made an 
adaptation from problems with a single knapsack to problems with multiple knapsacks, and tested it with 
different values of α (he only reported values of 0.8). This experiment was performed in a Pentium IV with 
256 Mb RAM and 1.8 GHz using CPLEX V 8.1. We tested 10 instances with 100 variables and 10 constraints 
for a tightness (α) equal to 0.25, 0.5, 0.75, and 0.8 and reported average values. For each m-n combination, 
the right-hand side coefficients are set using the relation, bi = ,a

Nj
ij∑

∈

α i ∈ M, where α is a tightness ratio. The 

equations used to obtain the saij′ and the sc j′ in each case, were:  
 

Table 3. Equations to generate coefficients aij and xj with different generators. 
 
 

 
 We allowed a total time of 3 hours of CPU for each problem and reported the number of problems solved to 
optimality, the number of problems that could not be solved in three hours and the number of problems that 
could not be solved because of the lack of memory in the computer. Results for these generators are shown 
in Table 4. 
 
 We are using the number of nodes as a measure of the "hardness" of the problems. This measure 
correspond to the general measure of hardness of an integer problem, studied by Hooker  [1994],[2003], y 
Hooker and Osorio[1999]. He concluded that the search tree size, expressed by the number of nodes, is 
relatively an intrinsic measure because it does not depend on most of the details of the software.  The main 
problem is that it depends on the branching rule, but we can solve problems using the same branching rule 
and platform. It may be, sometimes, done for two or three branching rules to see if it affects the relative 
results. 
 
 On the other hand, the gap is the relative distance between the best integer found in the branch and bound 
tree and the LP value of the best unexplored node in the tree. It may be used as an approximation to know 
the quality of the solution when the process is interrupted. The average gap of the instances that have to be 
interrupted after three hours of CPU is presented in Table 4. 
 
 The results obtained with all the generators presented, enforce the same ideas presented in the paper and 
obtained by other authors [1994] about the elements that make a problem hard to solve. From all the 
characteristics mentioned in the paper, the exponential distribution in the coefficients made the biggest 
contribution to the hardness of the problems presented. Generators OSORIO, CUAYA and CUAYA1 were, 
systematically, generating instances that had a very big number of nodes in the searching tree and could not 
be totally solved in less than three hours of CPU. 
 

GENERATOR aij, i ∈ M, j ∈ N cj, j ∈ N 

Martello U(cj –10, cj + 10)  U(0,1000)  

Frèvile U(0,1000)  ∑
∈Mi

ij )a( /m + 500 U(0,10)  

Glover U(0,10) + 0.1cj(1 + U(0,10)    51 U(0,10) + 50  

OSORIO 1.0 – 1000 ln(U(0,1)) 10 ∑
∈Mi

ij )a( /m + 10 U(0,1) 

CUAYA 1.0 – 1000 ln(U(0,1)) 100 m/)a(
Mi

ij∑
∈

+ 10 ln(U(0,1) 

CUAYA1 32000 U(0,1)½ 10 m/)a(
Mi

ij∑
∈

+ 10 U(0,1) 
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Table 4. Results for instances with 100 variables and 5 constraints. 
 

Finished by 
Generator α Correlation Solution 

time Nodes GAP # Prob 
Finish. Time Memory 

Frèville 0.25 0.3192356 35.116 47000.7  10 0 0 

Glover 0.25 0.7037480 2.246 3081.7  10 0 0 

Martello 0.25 0.7037480 35.451 49464.8  10 0 0 

OSORIO 0.25 0.4674919 12361.200 9950703.9 0.001026 0 8 2 

CUAYA 0.25 0.2173587 123000000 9857093.3 0.000943 0 9 1 

CUAYA1 0.25 - 0.8531521 12750.900 9893667.2 0.000583 0 8 2 

Frèville 0.5 0.3192356 23.986 31203.6  10 0 0 

Glover 0.5 0.7037480 2.210 3027.7  10 0 0 

Martello 0.5 0.9998064 26.393 38761.9  10 0 0 

OSORIO 0.5 0.4674919 12503.700 9896030.7 0.000471 0 8 2 

CUAYA 0.5 0.2173587 12853.500 9824380.3 0.000449 0 9 1 

CUAYA1 0.5 - 0.8531521 12267.100 9982488.3 0.000320 0 9 1 

Frèville 0.75 0.3192356 13.643 17635.1  10 0 0 

Glover 0.75 0.7037480 1.549 1922.8  10 0 0 

Martello 0.75 0.9998064 5.069 7580.9  10 0 0 

OSORIO 0.75 0.4674919 11907.800 9234448.1 0.0002912 1 9 0 

CUAYA 0.75 0.2173587 12280.600 9742883.5 0.0003150 0 10 0 

CUAYA1 0.75 - 0.8531521 11108.800 8587458.6 0.0002074 1 9 0 

Frèville 0.8 0.3192356 10.050 13231.1  10 0 0 

Glover 0.8 0.7037480 0.824 940.6  10 0 0 

Martello 0.8 0.9998064 6.512 9429.4  10 0 0 

OSORIO 0.8 0.4674919 12700.300 9606857.2 0.0002855 1 9 0 

CUAYA 0.8 0.2173587 12361.300 9554086.9 0.0002710 0 10 0 

CUAYA1 0.8 - 0.8531521 12303.100 9698323.3 0.0002015 0 10 0 

 
5. CONCLUSIONS 
 
 The results show that the problems generated with exponential distributions, usually need a greater number 
of nodes in the searching tree and CPU time to be solved to optimality for most of the instances. These 
results highlight the need to combine efforts from the AI and OR fields to explore more in detail the behavior 
of combinatorial problems to get more information about the settings that make “hard” problems really hard 
for MKP.  
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